Skip to main content

Built-in Functions

Global Functions

The following functions come with sCrypt:

Assert

  • assert(condition: boolean, errorMsg?: string) Throw an Error with the optional error message if condition is false. Otherwise, nothing happens.
assert(1n === 1n)        // nothing happens
assert(1n === 2n) // throws Error('Execution failed')
assert(false, 'hello') // throws Error('Execution failed, hello')

Fill

  • fill(value: T, length: number): T[length] Returns an FixedArray with all size elements set to value, where value can be any type.
note

length must be a compiled-time constant.

// good
fill(1n, 3) // numeric literal 3
fill(1n, M) // const M = 3
fill(1n, Demo.N) // `N` is a static readonly property of class `Demo`

Math

  • abs(a: bigint): bigint Returns the absolute value of a.
abs(1n)  // 1n
abs(0n) // 0n
abs(-1n) // 1n
  • min(a: bigint, b: bigint): bigint Returns the smallest of a and b.
min(1n, 2n) // 1n
  • max(a: bigint, b: bigint): bigint Returns the lagest of a and b.
max(1n, 2n) // 2n
  • within(x: bigint, min: bigint, max: bigint): boolean Returns true if x is within the specified range (left-inclusive and right-exclusive), false otherwise.
within(0n, 0n, 2n) // true
within(1n, 0n, 2n) // true
within(2n, 0n, 2n) // false

Hashing

  • ripemd160(a: ByteString): Ripemd160 Returns the RIPEMD160 hash result of a.
  • sha1(a: ByteString): Sha1 Returns the SHA1 hash result of a.
  • sha256(a: ByteString): Sha256 Returns the SHA256 hash result of a.
  • hash160(a: ByteString): Ripemd160 Actually returns ripemd160(sha256(a)).
  • pubKey2Addr(pk: PubKey): Addr Wrapper function of hash160.
  • hash256(a: ByteString): Sha256 Actually returns sha256(sha256(a)).

ByteString Operations

Basic types allowed to be used in @props and @methods are boolean and bigint, along with their wrapper types Boolean and BigInt.

A string literal is not allowed to be used directly without being converted into a ByteString.

@method()
public example(x: bigint, y: ByteString, z: boolean) {

assert(x == 5n)

assert(z)

// Strings must by converted to ByteString before being used
// in a smart contract:
assert(y == toByteString("hello world!", true))

// Vice versa, we can turn integers into ByteStrings:
assert(intToByteString(x) == toByteString('05'))

// Little-endian signed-magnitude representation is being used:
assert(intToByteString(-x) == toByteString('85'))
assert(intToByteString(-x * 1000n) == toByteString('8893'))

}

  • intToByteString(n: bigint): ByteString If size is omitted, convert n is converted to a ByteString in sign-magnitude little endian format, with as few bytes as possible (a.k.a., minimally encoded). Otherwise, converts the number n to a ByteString of the specified size, including the sign bit; fails if the number cannot be accommodated.
// as few bytes as possible
intToByteString(128n) // '8000', little endian
intToByteString(127n) // '7f'
intToByteString(0n) // ''
intToByteString(-1n) // '81'
intToByteString(-129n) // '8180', little endian
  • len(a: ByteString): number Returns the byte length of a.
const s1 = toByteString('0011', false) // '0011', 2 bytes
len(s1) // 2

const s2 = toByteString('hello', true) // '68656c6c6f', 5 bytes
len(s2) // 5

Bitwise Operator

Bigint in the Bitcoin is stored in sign–magnitude format, not two's complement format commonly used. If the operands are all nonnegative, the result of the operation is consistent with TypeScript's bitwise operator, except ~. Otherwise, the operation results may be inconsistent and thus undefined. It is strongly recommended to NEVER apply bitwise operations on negative numbers.

  • and(x: bigint, y: bigint): bigint Bitwise AND
and(13n, 5n) // 5n
and(0x0a32c845n, 0x149f72n) // 0x00108840n, 1083456n
  • or(x: bigint, y: bigint): bigint Bitwise OR
or(13n, 5n) // 13n
or(0x0a32c845n, 0x149f72n) // 0xa36df77n, 171368311n
  • xor(x: bigint, y: bigint): bigint Bitwise XOR
xor(13n, 5n) // 8n
xor(0x0a32c845n, 0x149f72n) // 0x0a265737n, 170284855n
  • invert(x: bigint): bigint Bitwise NOT
invert(13n)  // -114n
  • lshift(x: bigint, n: bigint): bigint Arithmetic left shift, returns x * 2^n.
lshift(2n, 3n)   // 16n
  • rshift(x: bigint, n: bigint): bigint Arithmetic right shift, returns x / 2^n.
rshift(21n, 3n)    // 2n
rshift(1024n, 11n) // 0n

Exit

  • exit(status: boolean): void Calling this function will terminate contract execution. If status is true then the contract succeeds; otherwise, it fails.

SmartContract Methods

The following @methods come with the SmartContract base class.

loadArtifact

Function static loadArtifact(artifactFile: Artifact) loads the contract artifact file from the path you passed in to initialize the contract class.

If no parameter is passed when calling, the function will load the artifact file from the default directory. This is generally used during testing.

You can also pass the artifact path directly. This is usually used when the method is called when interacting with a contract at the front-end.

import { TicTacToe } from './contracts/tictactoe';
import artifact from '../artifacts/tictactoe.json';
TicTacToe.loadArtifact(artifact);

checkSig

Function checkSig(signature: Sig, publicKey: PubKey): boolean verifies an ECDSA signature. It takes two inputs: an ECDSA signature and a public key.

It returns if the signature matches the public key.

caution

All signature checking functions (checkSig and checkMultiSig) follow the NULLFAIL rule: if the signature is invalid, the entire contract aborts and fails immediately, unless the signature is an empty ByteString, in which case these functions return false.

For example, Pay-to-Public-Key-Hash (P2PKH) can be implemented as below.

class P2PKH extends SmartContract {
// Address of the recipient.
@prop()
readonly address: Addr

constructor(address: Addr) {
super(...arguments)
this.address = address
}

@method()
public unlock(sig: Sig, pubkey: PubKey) {
// Check if the passed public key belongs to the specified public key hash.
assert(pubKey2Addr(pubkey) == this.address, 'address does not correspond to address')
// Check signature validity.
assert(this.checkSig(sig, pubkey), 'signature check failed')
}
}

checkMultiSig

Function checkMultiSig(signatures: Sig[], publickeys: PubKey[]): boolean verifies an array of ECDSA signatures. It takes two inputs: an array of ECDSA signatures and an array of public keys.

The function compares the first signature against each public key until it finds an ECDSA match. Starting with the subsequent public key, it compares the second signature against each remaining public key until it finds an ECDSA match. The process is repeated until all signatures have been checked or not enough public keys remain to produce a successful result. All signatures need to match a public key. Because public keys are not checked again if they fail any signature comparison, signatures must be placed in the signatures array using the same order as their corresponding public keys were placed in the publickeys array. If all signatures are valid, true is returned, false otherwise.

class MultiSigPayment extends SmartContract {
// Addresses of the 3 recipients.
@prop()
readonly addresses: FixedArray<Addr, 3>

constructor(addresses: FixedArray<Addr, 3>) {
super(...arguments)
this.addresses = addresses
}

@method()
public unlock(
signatures: FixedArray<Sig, 3>,
publicKeys: FixedArray<PubKey, 3>
) {
// Check if the passed public keys belong to the specified addresses.
for (let i = 0; i < 3; i++) {
assert(pubKey2Addr(publicKeys[i]) == this.addresses[i], 'address mismatch')
}
// Validate signatures.
assert(this.checkMultiSig(signatures, publicKeys), 'checkMultiSig failed')
}
}

buildChangeOutput

Function buildChangeOutput(): ByteString creates a change output.

class Auction extends SmartContract {

// ...

@method()
public bid(bidder: Addr, bid: bigint) {

// Addr
const auctionOutput: ByteString = ...

// Refund previous highest bidder.
const refundOutput: ByteString = ...

let outputs: ByteString = auctionOutput + refundOutput

// Add change output.
outputs += this.buildChangeOutput()

assert(sha256(outputs) == this.ctx.hashOutputs, 'hashOutputs check failed')
}
}

Specify the change address via PSBT:


const address = await signer.getAddress();
const feeRate = await provider.getFeeRate();
const psbt = new ExtPsbt();

psbt.addUTXO(utxos) // add inputs and outputs
.addContractOutput(contract, satoshis)
.change(address, feeRate); // add change output explicitly

timeLock

Function timeLock(locktime: bigint): boolean returns whether the calling transaction has its nLocktime value set to a point past the passed locktime value. This value can either be a UNIX timestamp or a block height. Additionally, it ensures the value of nSequence is set to less than 0xFFFFFFFF.

If we assert the returned value to be true, we have effectively ensured that the public method of our smart contract cannot be successfully invoked until the specified time has passed.

class TimeLock extends SmartContract {

@prop()
locktime: bigint

// ...

@method()
public unlock() {
assert(this.timeLock(this.locktime), 'time lock not yet expired')
}

}
note

This mechanism can be employed solely to ensure that a method can be called after a specific point in time. In contrast, it cannot be employed to ensure that a method is called before a specific point in time.

checkInputState

Check state of the input. By default, the system checks the state of the input. If you use this function to specify checking only specific inputs' State, you must set the autoCheckInputState option in the @method() decorator to false.

export class Counter extends SmartContract<CounterState> {
@method({
autoCheckInputState: false
})
public increase() {
this.checkInputState(this.ctx.inputIndex, CounterStateLib.serializeState(this.state))
this.state.count++;
const nextOutput = TxUtils.buildDataOutput(this.ctx.spentScriptHash, this.ctx.value, CounterStateLib.stateHash(this.state))
const outputs = nextOutput + this.buildChangeOutput();
assert(this.checkOutputs(outputs), 'Outputs mismatch with the transaction context');
}
}

backtraceToOutpoint and backtraceToScript

Funtion backtraceToOutpoint is for checking whether the contract can be traced back to the genesis outpoint.

Funtion backtraceToScript is for checking whether the contract can be traced back to the genesis script.

Both functions accept the BacktraceInfo parameter, which contains the following fields:

/**
* @type {TxIn}
* the traceable input in the previous transaction
*/
prevTxInput: TxIn;

/**
* @type {Int32}
* the index of the traceable input in the previous transaction
*/
prevTxInputIndex: Int32;

/**
* @type {TxHashPreimage}
* the preimage of the previous previous transaction
*/
prevPrevTxPreimage: TxHashPreimage;

To retrieve the BacktraceInfo, specify {"withBackTraceInfo" : true} in CallOptions.

If withBackTraceInfo is specified, you can also set prevPrevTxFinder to determine how to locate previous transactions. If not specified, the default finder will be used. The default finder starts searching from the 0th input of the transaction. Here is the implementation of the default finder:

const prevPrevTxFinder = async (prevTx: Transaction, provider: UtxoProvider & ChainProvider, _inputIndex: InputIndex) => {
const prevTxId = uint8ArrayToHex(prevTx.inputs[0].prevTxId);
const prevTxHex = await provider.getRawTransaction(prevTxId);
return prevTxHex;
}

Standard Libraries

sCrypt comes with standard libraries that define many commonly used functions.

TxUtils

The TxUtils library provides a set of commonly used utility functions.

  • static buildOutput(scriptHash: ByteString, outputSatoshis: UInt64): ByteString Build a transaction output with the specified script hash, satoshi amount and empty data.
const scriptHash = toByteString('f746ec16e2e791f6dc6507ced214429db32f2db3afe4648a55a49d8bbdc6e03d')
TxUtils.buildOutput(scriptHash, 1n) // '0100000000000000f746ec16e2e791f6dc6507ced214429db32f2db3afe4648a55a49d8bbdc6e03de3b0c44298fc1c149afbf4c8996fb92427ae41e4649b934ca495991b7852b855'
const address = Addr(toByteString('0011223344556677889900112233445566778899'))
TxUtils.buildP2PKHScript(address) // '76a914001122334455667788990011223344556677889988ac'
  • static buildP2PKHOutput(amount: UInt64, pubKeyHash: PubKeyHash): ByteString Build a P2PKH output from the public key hash.
const address = Addr(toByteString('0011223344556677889900112233445566778899'))
TxUtils.buildP2PKHOutput(1n, address) // '01000000000000005df43715170dedc3e6ed31224f6a29c16014e1329b37c9f225b0f917c3f6323fe3b0c44298fc1c149afbf4c8996fb92427ae41e4649b934ca495991b7852b855'
  • static buildDataOutput(scriptHash: ByteString, satoshis: UInt64, dataHash: ByteString ): ByteString Build a transaction output with the specified script hash, satoshi amount and data hash.
const scriptHash = toByteString('f746ec16e2e791f6dc6507ced214429db32f2db3afe4648a55a49d8bbdc6e03d')
const dataHash = toByteString('48615e1ab34c2c9abeacf9cf6b4fea9093020829f974b8280c8f3fd826cbb9cf')
TxUtils.buildDataOutput(scriptHash, 1n, dataHash) // '0100000000000000f746ec16e2e791f6dc6507ced214429db32f2db3afe4648a55a49d8bbdc6e03d48615e1ab34c2c9abeacf9cf6b4fea9093020829f974b8280c8f3fd826cbb9cf'
  • static satoshisToByteString(n: UInt64): ByteString Convert a satoshis amount to ByteString
TxUtils.satoshisToByteString(100000000n) // '00e1f50500000000'
  • static byteStringToSatoshis(bs: ByteString): UInt64 Convert a ByteString to satoshis amount
TxUtils.byteStringToSatoshis(toByteString('00e1f50500000000')) // 100000000n

StdUtils

StdUtils is a utility class providing standard helper methods for working with ByteStrings and numeric conversions.

  • checkLenDivisibleBy Checks if the length of a ByteString is divisible by a given number and returns the quotient.
assert(inputCount == StdUtils.checkLenDivisibleBy(spentScriptHashes, 32n), 'invalid spentScriptHashes');
  • uint64ToByteString Converts a UInt64 value to a little-endian ByteString.
StdUtils.uint64ToByteString(100n);
  • uint32ToByteString Converts a UInt32 number to a 4-byte little-endian ByteString.
StdUtils.uint32ToByteString(100n);
  • byteStringToUInt32 Converts a 4-byte ByteString to an unsigned 32-bit integer in little-endian format.
StdUtils.byteStringToUInt32(tobyteString('00000064'));
  • toLEUnsigned Converts signed integer n to unsigned integer of l string, in little endian
StdUtils.toLEUnsigned(100n, 4n)
  • fromLEUnsigned Converts ByteString to unsigned integer, in sign-magnitude little endian
StdUtils.fromLEUnsigned(tobyteString('00000064'))
  • writeVarInt Encodes a bigint into a variable-length integer (VarInt) format as ByteString.
StdUtils.writeVarInt(1n)
  • pushData Pushes data to a buffer with appropriate size header.
StdUtils.pushData(tobyteString('00000064'))
StdUtils.readVarint(StdUtils.writeVarInt(1n), 0n)

StateLib

When a contract's state must be shared across contracts or be accessible to other contracts, the StateLib library should be employed.

  • serializeState Serializes the given state object into a ByteString.
MyStateLib.serializeState(contractState)
  • stateHash Computes the SHA-256 hash of the given state object.
MyStateLib.stateHash(contractState)

ByteStringWriter

ByteStringWriter is a writer for serializing ByteString, boolean, bigint

let writer = new ByteStringWriter();
writer.writeByteString(tobyteString('00000064'));
writer.writeBoolean(true);
writer.writeVarInt(100n);
let bs = writer.buf;

ByteStringReader

ByteStringReader is a reader for deserializing ByteString, boolean, bigint

let reader = new ByteStringReader(data);
let data1 = reader.readBytes();
let data2 = reader.readBoolean();
let data3 = reader.readVarint();

ContextUtils

ContextUtils is a Utility class for smart contract context operations.

It provides methods for:

  • ECDSA signature generation and verification

  • Transaction preimage serialization and validation

  • Prevouts and spent data verification

  • Lock time checking

  • Various cryptographic and serialization utilities

  • sign Generates a DER-encoded ECDSA signature from given parameters.

const preimage = ContextUtils.serializeSHPreimage(shPreimage);

const h: ByteString = hash256(preimage);
const sig: Sig = ContextUtils.sign(
ContextUtils.fromBEUnsigned(h),
ContextUtils.privKey,
ContextUtils.invK,
ContextUtils.r,
ContextUtils.rBigEndian,
sigHashType);
  • serializeSHPreimage Serializes a SHPreimage object into a ByteString.
const preimage = ContextUtils.serializeSHPreimage(shPreimage);
  • checkPrevouts Verify that the prevouts context passed in by the user is authentic
// verify this.ctx.shaPrevouts and Prevouts
ContextUtils.checkPrevouts(
this.ctx.prevouts,
this.ctx.hashPrevouts,
this.ctx.inputIndex,
this.ctx.inputCount,
);
  • checkSpentScripts Check if the spent scripts array passed in matches the hashSpentDataHashes
// verify this.ctx.hashSpentDataHashes and SpentScripts
ContextUtils.checkSpentScripts(this.ctx.spentScriptHashes, this.ctx.hashSpentDataHashes, inputCount);
  • checkSpentAmounts Check if the spent amounts array passed in matches the hashSpentAmounts
// verify this.ctx.hashSpentAmounts and SpentAmounts
ContextUtils.checkSpentAmounts(this.ctx.spentAmounts, this.ctx.hashSpentAmounts, inputCount);
  • checkSpentDataHashes Verifies the integrity of spent data hashes against the provided transaction hash and input count.
ContextUtils.checkSpentDataHashes(this.ctx.spentDataHashes, this.ctx.hashSpentDataHashes, inputCount);
  • getSpentScriptHash Retrieves the script hash of a spent input at the specified index.
const spentScriptHash = ContextUtils.getSpentScriptHash(this.ctx.spentScriptHashes, this.ctx.inputIndex)
  • getSpentAmount Retrieves the spent amount for a specific input index from the given SpentAmounts.
const spentAmount = ContextUtils.getSpentAmount(this.ctx.spentAmounts, this.ctx.inputIndex)
  • getSpentDataHash Retrieves the data hash for a specific input from the spent data hashes.
const dataHash = ContextUtils.getSpentDataHash(this.ctx.spentDataHashes, this.ctx.inputIndex)
  • checknLockTime Checks if the lock time conditions are met for a given preimage and lock time.
let block = 10000n
assert(ContextUtils.checknLockTime(this.ctx, block), "Locktime not met");

TxHashPreimageUtils

A utility class for working with transaction hash preimages in Opcat smart contracts.

It provides methods to:

  • Calculate transaction hash from preimage data

  • Extract individual input/output byte strings from preimage

  • getTxHashFromTxHashPreimage Computes the transaction hash from a given transaction hash preimage.

const txHash = TxHashPreimageUtils.getTxHashFromTxHashPreimage(txHashPreimage);
assert(txHash == slice(this.ctx.prevouts, inputIndex * 36n, inputIndex * 36n + 32n), 'prevTxHash mismatch');
  • getInputByteString Extracts the byte string of a specific input from the transaction hash preimage.
// inputByteString = prevout(36 bytes) + unlockScriptHash(32 bytes) + sequence(4 bytes)
const inputByteString = TxHashPreimageUtils.InputByteString(txHashPreimage, inputIndex);
  • getOutputByteString Extracts the byte string of a specific output from the transaction hash preimage.
// outputByteString = amount(8 bytes) + lockingScriptHash(32 bytes) + dataHash(32 bytes)
const outputByteString = TxHashPreimageUtils.getOutputByteString(txHashPreimage, inputIndex);